The Mechanical Elevator

Initially I considered a ramp that complied with Americans with Disabilities Act of 1990 (ADA) § 4.8: with railings, a slope of no more than 1:12, and flat landings for each 30 inches (760 mm) of rise. With these requirements, this ramp would need to be nearly 160 feet (48 meters) long including five 5' (1.5m) landings just to reach the first level. To achieve this in a single 360° sweep, it would need to be about 25' (8m) from the center of the Temple, placing it at the outermost reach of the branches.

So as an alternative, I thought of a mechanical elevator to permit participants to lift and lower others. Instead of using winches or electric motors, the idea is for it to operate entirely on counterweights. The permanent counterweights would be installed so the car comes to rest at the first level of the Temple (top). That way someone could use it without assistance in the case of an emergency. To raise the lift, participants would act as human counterweights on a smaller side-car to hoist the main car to the first level.

To avoid the cars moving too quickly, a mechanical governor would limit the speed of travel both ways. By keeping the system largely mechanical, I figure I can avoid failures of higher-tech solutions.

In the end, I know this is not ideal as it doesn't offer complete access: the lift would permit any participant to reach the first level but not the second.


Considering the Burn

From the beginning, I have been adamant that the Temple burn in such a way that it will conclude with the tree-like structure splitting open in four quadrants. In thinking about the most recent designs, I couldn't figure out how to handle the three distinct levels. If the entire tree splits, the topmost branches—at some 30' (9m) tall would have a tremendous amount of momentum that would tend to fling burning lumber into the crowd. For the first level, this is not an issue as it is only about 10' (3m) high so the momentum outward would be substantially smaller.

For now, I am considering the idea of the first level falling outward while the upper levels fall straight down. To avoid a tall portion of the Temple landing upright in the ground, the supports from the first to second level would fold outward: they would tie the center of the second level to an anchor on each section of the four splitting parts of the first level. The second level itself (likewise the third level) would be a solid structure that would not be designed to fall outward like the first level. Thus, the support for the second level would split outward with the quadrants of the first level while the second and third levels would tend to fall straight downward. Although the support from the second to the third level would be solid, being weakened by the fire and the direct 20' (6m) drop will at least weaken it severely, if not demolish it instantly.